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Branching rules for E, 3. SO,, 

B G Wybourne 
Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 2 November 1983 

Abstract. Branching rules for E,JSO,, are derived from those of E , lSU,x(E,JSU,)  
and SOl6 1 U, X s u s  by noting that both group chains share a common U,  X SUB subgroup. 
Additional branching rules are deduced from Kronecker products of E, and SO,, irreps. 
In each case the rules distinguish unambiguously between conjugate irreps of SO,,. An 
alternative labelling scheme for the irreps of SO,,, based on its maximal U1 X SUI, subgroup 
is outlined. 

1. introduction 

The exceptional groups continue to interest physicists developing grand unification 
and supergravity theories (Slansky 198 1). In recent years considerable progress has 
been made in calculating the properties of the exceptional group irreps. Extensive 
tabulations of Kronecker products and branching rules have been given (Wybourne 
and Bowick 1977, Wybourne 1979, McKay and Patera 1981) for the exceptional 
groups. King and Al-Qubanchi (1981a) following upon Wybourne and Bowick (1977) 
have developed a natural labelling scheme for the irreps of the exceptional groups 
based upon their classical maximal subgroups and indicated their relationship to the 
corresponding Dynkin labelled irreps. 

In the particular case of Ea, King and Al-Qubanchi based their labelling of the irreps 
of E8 upon those of the maximal subgroup SOl6 and went on (King and Al-Qubanchi 
1981b) to deduce from weight multiplicity considerations some E8J SOl6 branching 
rules. 

Wybourne and Bowick (1 977) gave branching rules for E8 4 SU9 and E8 & SU2 X E, 
which were further extended by Wybourne (1979). Their methods involved the use 
of dimensional and Dynkin indexes and are inappropriate for the case of &&So16 
since SOl6 possesses conjugate pairs of irreps that are not distinguished by dimensions 
or Dynkin indexes. In this paper a U1 X sua subgroup common to two group chains 
is exploited to give E8J  SOl6 branching rules unequivocally from those found for 
E8J SU2 X E,. Many of the notational details have been developed in a series of recent 
papers (King et a1 1981, Black et a1 1983, Black and Wybourne 1983) and the reader 
is referred to these papers for essential details. 

2. Labelling SOzk irreps 

Wybourne and Bowick (1977) pointed out the desirability of labelling the irreps of 
an exceptional group G in terms of one of its maximal subgroups H, an idea extended 
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1398 B G Wybourne 

by King and Al-Qubanchi (1981a). With such a labelling system established we are 
assured that under the restriction of the irrep A under G S H  we have 

A J A + .  . . . (1) 

The k fundamental irreps of S02k are traditionally labelled in the Cartan-Weyl 
( A )  or Dynkin notation ( a )  as 

( A )  ( a )  
[1"1 ( 0 . .  . O l O . .  . 0) 

A- (0 . .  . o s . .  10) 

A+ ( 0 . .  . o . .  - 01 )  

x = 1 , 2 , .  . . , k - 2  

where a choice is made in relating A+ and A- to the corresponding Dynkin labels. The 
above choice leads to the relationship for an arbitrary irrep [ A ]  of S02k 

and inversely 
a.  = A .  - A .  i = l , 2 , .  . . , k - 1 ,  

(3) 
I I l + l ?  

ak = A k - i +  

The highest weight irreps arising in the reduction of the fundamental irreps of S02k 
under SOzk J U1 x SUI, are (Black and Wybourne 1983) 

[1"1= {XHl"} ( X S  k-2),  

[1 kl+ = {k){O), 11 "- 
A- 2 { k/2 - 1}{ 1 '-'}, 

Let us now label the irreps of S02k 
maximal subgroup U1 X SUI, by putting 

k - 1  

vi = aj, vk = 0, 
j=i 

k 
p =  j . - $  k(ak-l+ak)* 

j =  1 

={k-2}{2k-'}, (4) 

A+ 2 {k/21{0). 

in terms of such highest weight irreps of the 

The irreps of S02k may now be unequivocally labelled as [ p ;  v] and under SOzk J U l  X 
SUI, we have 

b; ~ l = b H V l  
as the leading term. 

It follows from (4) that 
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where U ,  is the weight of the partition ( v )  and hence 

Vi = A ,  + Ak-1  

V k - 1  = A k - 1  -Ak, vk = 0, ) ( L = ~ A , = W ~ ,  

( i = 1 , 2  , . . . ,  k-2), 
(7) 

where wA is the weight of the partition (A). Inversely 

A i  = Vi + v k -  1 + (/A - U , ) /  k, 
A k - i  = Vk-i+(IL-W,)/k, A k  = (P -%) /k .  

i =  1 ,2 , .  . . , k-2, 
(8) 

For S 0 1 6  we have the labelling equivalences 

[A; 2,]+ = (00000005) = [20; 01, 

[A; 327]+ = (10000005) = [21; 11, 

[l’], = (00000002) = [8; 21, 

[A; 2’1- = (00000050) 5 [15; 5’1, 

[321]= (lllOOOOO)=[6; 3211, 

[18]- = (00000020) = [6 ;  Z7]. 

The reduction of a (possibly reducible) representation [A] of sok under S 0 2 k  & U1 x SUI, 
leads to a string of irreps of U1 X SUI, which can be sequenced in order of highest 
weight for U, and then for suk. Thus a typical U1 X su8 string could be 

{4){0) +{2}({16} + {I2}) + {0}({2161 + {I4)+ (01) + {-2}({16}+ {12}) +{-4l{Ol. (9) 

A U, XSUk string can be reconstructed as a S 0 2 k  string by first examining the 
leading term in the sequenced U, X suk string and noting (1). Thus in the above string 
the leading term is {4}{0} + [4; 01 = [A; 01,. Under SOl6& U1 X SUS we have (Black 
and Wybourne 1983) 

[A;  01+&{4}{0}+{2}{16}+{0}{14}+{-2}{12}+{-4}{0}. 

If these terms are deleted from (9) we are left with the residual string 

{2){l2}+{0}({2l6}+{O}) +{-2}{16}. (10) 
The leading term is {2}{12}=[2; 12]=[12]. Under S 0 , 6 & U 1  XSUS [12] decomposes 
into just the terms contained in (10) and hence the original U1 X sus string arises from 
the reduction of [A; 0]++[12] of SOl6 under SO16&Ul XSU,. 

The above procedure allows any U1 x SUI, string derived from a S02k .1 U, x SUI, 
reduction to be uniquely reconstructed as a string. 

4. E*& SOl6 branching rules 

We now show how to use the preceding remarks to obtain the branching rules for 
E,& so16 unambiguously from those for E8 SU2 X E7 and E7 & sus by considering the 
two group chains 

Es& SU2x[&& sus]& UI sus ( 1 l a )  

E8&S016&U1 ’SUS. (1 lb )  

and 
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The two groups U1 X SUE terminating the two chains coincide if the weights characteris- 
ing the irreps of U1 in (1 1) are divided by two. This factor of two arises simply in the 
particular choice made in deriving the S02k .1 U1 X SUI, branching rule (Black and 
Wybourne 1983). With this in mind we can portray the group chains as 

If the E8 .1 SU2 X E, and E7.1 SUE branching rules are known then the U1 X su8 content 
of an E8 irrep can be determined to yield a string of U, XSU, irreps. This string can 
be reconstructed as a string of SOl6 irreps corresponding to the SOl6 content of the 
Ea irrep. 

The irreps of Ea may be conveniently labelled either in terms of the labels used 
for the maximal subgroup SU9 involving partitions ( A )  into at most eight parts or in 
terms of those ( p . )  used for the SOl6 maximal subgroup (King and Al-Qubanchi 
1981a). The two sets of labels may be intraconverted by noting that 

pa = -A3+iwA -?A2 .  1 
= p.2- p.3,  

Use of EEL SU2 X E, and E,& SUE branching rules given by Wybourne and Bowick 
(1977) and Wybourne (1979) readily verified the EaJSO16 decompositions given by 
King and Al-Qubanchi (1981b) in an unambiguous manner. Their results may be 
extended either by exploiting the EE Kronecker products given by Wybourne (1979) 
together with those of SOl6 or by extending the EE .1 SU2 X E, branching rules and 
following the above procedure. 

King et al (1981) and Black er a1 (1983) have given systematic procedures for 
resolving Kronecker products and up to fourth powers of irreps of SOzk. Consider 
the 4881384-dimensional irrep of Ea labelled (42) in the SU9 scheme and (4) in the 
S016 scheme. Inspection of Wybourne’s Ea tables (1979) shows that in the SOl6 scheme 

(13) 

The E8&SOl6 branching rules for all the irreps, apart from (4), appearing on the 
right-hand side of (13) are given by King and AI-Qubanchi (1981b). Furthermore, 
under Ea .1 SOl6 we have 

( 2 ) 0 { 2 }  = (4) + ( 313) + (22) + (2) + (0) + ( A ;  2)+, 

(2) .1 P I  + [I4] + [A; I]-. (14) 
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Thus the so16 content of (13) follows upon evaluating the plethysm (Wybourne 1970) 

([2l+[l41 + [A; 11-1 @ { a  
= [2]0{2} + [l4]@{2} + [A; 1]-0{2} 

+[2] * [14]+[2] * [A; 1]-+[14] * [A; 13-. 

The SOl6 plethysms and products may be evaluated as in King er a1 (1981) and Black 
er a1 (1983) to yield a string of so16 irreps. The SOl6 irreps associated with the 
(313) + (22) + ( A ;  2)++ (2) + (0) are removed from the string to leave the SOl6 content 
of the (4) irrep of E8. A similar examination of the antisymmetric part of the Kronecker 
square of the (2) irrep of E8 yields the SOl6 string associated with the E8&SO16 
decomposition of the (A;  3)- irrep of E8. 

The corresponding branching rule for the (42) irrep of E8 follows from the use of 
the E8 Kronecker product 

(2) X ( 22) = (42) + (321) + (3  13) + (3  1) + ( 22) + ( 212) + (2) + ( A ;  3 l), + ( A ;  2)+. 

Likewise the (414) irrep of E8 arises in the antisymmetric part, ( 12)@{ 14}, of the fourth 
power of the (12) irrep of E8. The evaluation of the relevant so16 plethysms follows 
from King et al (1981). The branching rule for the (421’) irrep of E8 may then be 
found by noting that 

(313) X ( 12) - (21’) X (2) = (4212) + (414) + (31) + (22) + (21’) + (2) + ( 12). 

Continuing in this manner, it is not difficult to deduce many further E8 & SOl6 branching 
rules. By way of examples we give in table 1 the branching rules for four non-trivial 

Table 1. E8JSOI6 branching rules 

DO) E8 so,, 
4 881 384 (4) [4]+[31111111]-+[3111]+[2222]+[2211111+[221 

+[21111]+[11111111]++[1111]+[0]+[~; 31- +[s; 21111- 

[s ;  3]-+[s; 2111]-+[~; 211]++[s; 21] -+[~;  2]+ 
+[s;  21]-+[s; 111 11+ +[s;  l l l++[s ;  Ol+ 

+[s;  l l l l l ] - + [ s ;  1111-+[s; 11]+ +[s;  11- +[311111] 
+ [3111]+ [31] + [22211]+ E221 11 11 11- + [22113 
+ [2111111]+[21111] + [211] + [111111]+[113 

+2[s; 21]-+2[s; 2]++[s; 11111 Il l-+[s;  111111- 
+ [ s ;  1111]++2[s; 1111- +[s;  11]+ +2[s; 11-+[32111]+[321] 
+[31111111]+ +[311111]+[3111]+[311+[2221111] 
+[22211]+[222]+[22111111]-+[221111]+[22111+2[2111111] 
+ 2[21111]+ 2[211]+ [2]+ [11111111]- +[111111]+ [I 11 11 

76 271 625 (41’) [411]+[3221]+[3211111]+ [32111]+[321]+[31111111]- 
+2[311111]+[31111+[31]+[2222111+[2221111] 
+[22211]+[221111111-+[221111111++ 2[221111] 
+ 3[2211]+[22]+2[2111111]+ 2[211111+2[211] 

+[s; 2111111-+[s; 21111]++ 2[s; 2111]-+2[s; 21111- 
+ 3[s; 211- +[s; 2]+ +[s; 1111 11]+ +[s; 11 1111- 

6 696 000 ( A ;  3)- 

26411 008 (A;31)+ [s; 31]++[~;221]-+[~;  21111]++[s;2111]-+2[s; 211]+ 

+[11111111]+ + 2[111111]+[1 l l l ] + [ l l ] + [ s ;  3111- 
+[s; 31]++[s; 3]-+[s; 2211]++[~;  221]-+[~; 22]+ 

+2[s; 1111]++2[~; 1111- + 3 [ ~ ;  l l ]++[s ;  13- +[s; 01+ 
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irreps of E8J SOl6. It is important to note that the methods used here yield the required 
results unambiguously. The first branching rules are established using the known 
E8L SU2 X E, and E7J SUS branching rules. Once these are unambiguously established 
we can then use E8 Kronecker products to produce new EsJSOl6 branching rules 
without resorting to dimensional or Dynkin index methods that are ambiguous. 

The branching rules evaluated here were rapidly calculated using the program 
SCHUR (Black 1983) to compute the Es and SOl6 Kronecker products, and the 
SOl6&U1xSU8 branching rules. The EsLSO16 branching rules were built up in 
SCHUR which checked the final results by computing the dimensions and Dynkin 
index for the E8 and SOl6 irreps. 

5. Conclusion 

Methods for evaluating E8 & SOl6 branching rules in an unambiguous manner have 
been outlined and applied to some non-trivial examples. An alternative method of 
labelling the irreps of has been developed and exploited. It remains to be seen 
whether such a labelling scheme will lead to significant simplifications in computing 
properties of the groups. 
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