Branching rules for $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171397
(http://iopscience.iop.org/0305-4470/17/7/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:30

Please note that terms and conditions apply.

Branching rules for $\mathbf{E}_{\mathbf{8}} \downarrow \mathbf{S O}_{\mathbf{1 6}}$

B G Wybourne
Physics Department, University of Canterbury, Christchurch, New Zealand

Received 2 November 1983

Abstract

Branching rules for $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ are derived from those of $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times\left(\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}\right)$ and $\mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8}$ by noting that both group chains share a common $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ subgroup. Additional branching rules are deduced from Kronecker products of E_{8} and SO_{16} irreps. In each case the rules distinguish unambiguously between conjugate irreps of SO_{16}. An alternative labelling scheme for the irreps of $\mathrm{SO}_{2 k}$ based on its maximal $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ subgroup is outlined.

1. Introduction

The exceptional groups continue to interest physicists developing grand unification and supergravity theories (Slansky 1981). In recent years considerable progress has been made in calculating the properties of the exceptional group irreps. Extensive tabulations of Kronecker products and branching rules have been given (Wybourne and Bowick 1977, Wybourne 1979, McKay and Patera 1981) for the exceptional groups. King and Al-Qubanchi (1981a) following upon Wybourne and Bowick (1977) have developed a natural labelling scheme for the irreps of the exceptional groups based upon their classical maximal subgroups and indicated their relationship to the corresponding Dynkin labelled irreps.

In the particular case of E_{8}, King and Al -Qubanchi based their labelling of the irreps of E_{8} upon those of the maximal subgroup SO_{16} and went on (King and Al -Qubanchi 1981b) to deduce from weight multiplicity considerations some $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules.

Wybourne and Bowick (1977) gave branching rules for $\mathrm{E}_{8} \downarrow \mathrm{SU}_{9}$ and $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ which were further extended by Wybourne (1979). Their methods involved the use of dimensional and Dynkin indexes and are inappropriate for the case of $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ since SO_{16} possesses conjugate pairs of irreps that are not distinguished by dimensions or Dynkin indexes. In this paper a $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ subgroup common to two group chains is exploited to give $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules unequivocally from those found for $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$. Many of the notational details have been developed in a series of recent papers (King et al 1981, Black et al 1983, Black and Wybourne 1983) and the reader is referred to these papers for essential details.

2. Labelling $\mathbf{S O}_{\mathbf{2 k}}$ irreps

Wybourne and Bowick (1977) pointed out the desirability of labelling the irreps of an exceptional group G in terms of one of its maximal subgroups H, an idea extended
by King and Al-Qubanchi (1981a). With such a labelling system established we are assured that under the restriction of the irrep λ under $G \downarrow H$ we have

$$
\begin{equation*}
\lambda \downarrow \lambda+\ldots \tag{1}
\end{equation*}
$$

The k fundamental irreps of $\mathrm{SO}_{2 k}$ are traditionally labelled in the Cartan-Weyl (λ) or Dynkin notation (a) as
(λ)
(a)
$\left[1^{x}\right] \quad(0 \ldots 010 \ldots 0) \quad x=1,2, \ldots, k-2$
$\Delta_{-} \quad(0 \ldots 0 \ldots 10)$
$\Delta_{+} \quad(0 \ldots 0 \ldots 01)$
where a choice is made in relating Δ_{+}and Δ_{-}to the corresponding Dynkin labels. The above choice leads to the relationship for an arbitrary irrep [λ] of $\mathrm{SO}_{2 k}$

$$
\begin{align*}
& \lambda_{t}=\sum_{j=i}^{k-2} a_{j}+\frac{1}{2}\left(a_{k-1}+a_{k}\right), \quad i=1,2, \ldots, k-2, \\
& \lambda_{k-1}=\frac{1}{2}\left(a_{k-1}+a_{k}\right), \quad \lambda_{k}=\frac{1}{2}\left(-a_{k-1}+a_{k}\right), \tag{2}
\end{align*}
$$

and inversely

$$
\begin{align*}
& a_{i}=\lambda_{i}-\lambda_{i+1}, \quad i=1,2, \ldots, k-1, \tag{3}\\
& a_{k}=\lambda_{k-1}+\lambda_{k} .
\end{align*}
$$

The highest weight irreps arising in the reduction of the fundamental irreps of $\mathrm{SO}_{2 k}$ under $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{k}$ are (Black and Wybourne 1983)

$$
\begin{align*}
& {\left[1^{x}\right] \supset\{x\}\left\{1^{x}\right\} \quad(x \leqslant k-2),} \\
& {\left[1^{k}\right]_{+} \supset\{k\}\{0\}, \quad\left[1^{k}\right]_{-} \supset\{k-2\}\left\{2^{k-1}\right\},} \tag{4}\\
& \Delta_{-} \supset\{k / 2-1\}\left\{1^{k-1}\right\}, \quad \Delta_{+} \supset\{k / 2\}\{0\} .
\end{align*}
$$

Let us now label the irreps of $\mathrm{SO}_{2 k}$ in terms of such highest weight irreps of the maximal subgroup $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ by putting

$$
\begin{align*}
& \nu_{i}=\sum_{j=i}^{k-1} a_{j}, \quad \nu_{k}=0, \tag{5}\\
& \mu=\sum_{j=1}^{k} j a_{j}-\frac{1}{2} k\left(a_{k-1}+a_{k}\right) .
\end{align*}
$$

The irreps of $\mathrm{SO}_{2 k}$ may now be unequivocally labelled as $\left[\mu ; \nu\right.$] and under $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{1} \times$ SU_{k} we have

$$
[\mu ; \nu] \supset\{\mu\}\{\nu\}
$$

as the leading term.
It follows from (4) that

$$
\begin{align*}
& a_{i}=\nu_{1}-\nu_{i+1}, \quad i=1,2, \ldots, k-1, \\
& a_{k}=(2 / k)\left(\mu-\omega_{\nu}\right)+\nu_{k-1} \tag{6}
\end{align*}
$$

where ω_{ν} is the weight of the partition (ν) and hence

$$
\begin{array}{lc}
\nu_{i}=\lambda_{i}+\lambda_{k-1} & (i=1,2, \ldots, k-2), \\
\nu_{k-1}=\lambda_{k-1}-\lambda_{k}, & \nu_{k}=0, \quad \mu=\sum \lambda_{i}=\omega_{\lambda}, \tag{7}
\end{array}
$$

where ω_{λ} is the weight of the partition (λ). Inversely

$$
\begin{array}{ll}
\lambda_{i}=\nu_{i}+\nu_{k-1}+\left(\mu-\omega_{\nu}\right) / k, & i=1,2, \ldots, k-2, \tag{8}\\
\lambda_{k-1}=\nu_{k-1}+\left(\mu-\omega_{\nu}\right) / k, & \lambda_{k}=\left(\mu-\omega_{\nu}\right) / k .
\end{array}
$$

For SO_{16} we have the labelling equivalences

$$
\begin{array}{lc}
{\left[\Delta ; 2^{8}\right]_{+} \equiv(00000005) \equiv[20 ; 0],} & {\left[\Delta ; 2^{8}\right]_{-} \equiv(00000050) \equiv\left[15 ; 5^{7}\right],} \\
{\left[\Delta ; 32^{7}\right]_{+} \equiv(10000005) \equiv[21 ; 1],} & {[321] \equiv(11100000) \equiv[6 ; 321],} \\
{\left[1^{8}\right]_{+} \equiv(00000002) \equiv[8 ; 2],} & {\left[1^{8}\right]_{-} \equiv(00000020) \equiv\left[6 ; 2^{7}\right]}
\end{array}
$$

3. Reconstruction of $\mathbf{S O}_{\mathbf{2 k}}$ strings from $\mathbf{U}_{1} \times \mathbf{S U}_{k}$ strings

The reduction of a (possibly reducible) representation [λ] of SO_{k} under $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{k}$ leads to a string of irreps of $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ which can be sequenced in order of highest weight for U_{1} and then for SU_{k}. Thus a typical $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ string could be
$\{4\}\{0\}+\{2\}\left(\left\{1^{6}\right\}+\left\{1^{2}\right\}\right)+\{0\}\left(\left\{21^{6}\right\}+\left\{1^{4}\right\}+\{0\}\right)+\{-2\}\left(\left\{1^{6}\right\}+\left\{1^{2}\right\}\right)+\{-4\}\{0\}$.
A $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ string can be reconstructed as a $\mathrm{SO}_{2 k}$ string by first examining the leading term in the sequenced $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ string and noting (1). Thus in the above string the leading term is $\{4\}\{0\} \rightarrow[4 ; 0] \equiv[\Delta ; 0]_{+}$. Under $\mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8}$ we have (Black and Wybourne 1983)

$$
[\Delta ; 0]_{+} \downarrow\{4\}\{0\}+\{2\}\left\{1^{6}\right\}+\{0\}\left\{1^{4}\right\}+\{-2\}\left\{1^{2}\right\}+\{-4\}\{0\} .
$$

If these terms are deleted from (9) we are left with the residual string

$$
\begin{equation*}
\{2\}\left\{1^{2}\right\}+\{0\}\left(\left\{21^{6}\right\}+\{0\}\right)+\{-2\}\left\{1^{6}\right\} . \tag{10}
\end{equation*}
$$

The leading term is $\{2\}\left\{1^{2}\right\} \equiv\left[2 ; 1^{2}\right] \equiv\left[1^{2}\right]$. Under $\mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8}\left[1^{2}\right]$ decomposes into just the terms contained in (10) and hence the original $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ string arises from the reduction of $[\Delta ; 0]_{+}+\left[1^{2}\right]$ of SO_{16} under $\mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8}$.

The above procedure allows any $\mathrm{U}_{1} \times \mathrm{SU}_{k}$ string derived from a $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{k}$ reduction to be uniquely reconstructed as a $\mathrm{SO}_{2 k}$ string.

4. $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules

We now show how to use the preceding remarks to obtain the branching rules for $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ unambiguously from those for $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ and $\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}$ by considering the two group chains

$$
\begin{equation*}
\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times\left[\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}\right] \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8} \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}_{8} \downarrow \mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8} \tag{11b}
\end{equation*}
$$

The two groups $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ terminating the two chains coincide if the weights characterising the irreps of U_{1} in (11) are divided by two. This factor of two arises simply in the particular choice made in deriving the $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{k}$ branching rule (Black and Wybourne 1983). With this in mind we can portray the group chains as

If the $E_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ and $\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}$ branching rules are known then the $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ content of an E_{8} irrep can be determined to yield a string of $\mathrm{U}_{1} \times \mathrm{SU}_{8}$ irreps. This string can be reconstructed as a string of SO_{16} irreps corresponding to the SO_{16} content of the E_{8} irrep.

The irreps of E_{8} may be conveniently labelled either in terms of the labels used for the maximal subgroup SU_{9} involving partitions (λ) into at most eight parts or in terms of those (μ) used for the SO_{16} maximal subgroup (King and Al-Qubanchi 1981a). The two sets of labels may be intraconverted by noting that

$$
\begin{array}{ll}
\lambda_{1}=\mu_{1}+\mu_{2}, & \mu_{1}=\lambda_{1}-\frac{1}{6} \omega_{\lambda}+\frac{1}{2} \lambda_{2}, \\
\lambda_{2}=\mu_{1}+\mu_{2}-\frac{1}{2} \omega_{\mu}, & \mu_{2}=\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}, \\
\lambda_{3}=\mu_{2}-\mu_{8}, & \mu_{3}=-\lambda_{8}+\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}, \\
\lambda_{4}=\mu_{2}-\mu_{7}, & \mu_{4}=-\lambda_{7}+\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}, \\
\lambda_{5}=\mu_{2}-\mu_{6}, & \mu_{5}=-\lambda_{6}+\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}, \tag{12}\\
\lambda_{6}=\mu_{2}-\mu_{5}, & \mu_{6}=-\lambda_{5}+\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}, \\
\lambda_{7}=\mu_{2}-\mu_{4}, & \mu_{7}=\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2}-\lambda_{4}, \\
\lambda_{8}=\mu_{2}-\mu_{3}, & \mu_{8}=-\lambda_{3}+\frac{1}{6} \omega_{\lambda}-\frac{1}{2} \lambda_{2} .
\end{array}
$$

Use of $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ and $\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}$ branching rules given by Wybourne and Bowick (1977) and Wybourne (1979) readily verified the $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ decompositions given by King and Al-Qubanchi (1981b) in an unambiguous manner. Their results may be extended either by exploiting the E_{8} Kronecker products given by Wybourne (1979) together with those of SO_{16} or by extending the $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ branching rules and following the above procedure.

King et al (1981) and Black et al (1983) have given systematic procedures for resolving Kronecker products and up to fourth powers of irreps of $\mathrm{SO}_{2 k}$. Consider the 4881384 -dimensional irrep of E_{8} labelled (42) in the SU_{9} scheme and (4) in the SO_{16} scheme. Inspection of Wybourne's E_{8} tables (1979) shows that in the SO_{16} scheme

$$
\begin{equation*}
(2) \otimes\{2\}=(4)+\left(31^{3}\right)+\left(2^{2}\right)+(2)+(0)+(\Delta ; 2)_{+} . \tag{13}
\end{equation*}
$$

The $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules for all the irreps, apart from (4), appearing on the right-hand side of (13) are given by King and Al-Qubanchi (1981b). Furthermore, under $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ we have

$$
\begin{equation*}
\text { (2) } \downarrow[2]+\left[1^{4}\right]+[\Delta ; 1] . \tag{14}
\end{equation*}
$$

Thus the SO_{16} content of (13) follows upon evaluating the plethysm (Wybourne 1970)

$$
\begin{align*}
\left([2]+\left[1^{4}\right]+\right. & {[\Delta ; 1]-) \otimes\{2\} } \\
= & {[2] \otimes\{2\}+\left[1^{4}\right] \otimes\{2\}+[\Delta ; 1]_{-} \otimes\{2\} } \\
& +[2] \cdot\left[1^{4}\right]+[2] \cdot[\Delta ; 1]_{-}+\left[1^{4}\right] \cdot[\Delta ; 1]_{-} . \tag{15}
\end{align*}
$$

The SO_{16} plethysms and products may be evaluated as in King et al (1981) and Black et al (1983) to yield a string of SO_{16} irreps. The SO_{16} irreps associated with the $\left(31^{3}\right)+\left(2^{2}\right)+(\Delta ; 2)_{+}+(2)+(0)$ are removed from the string to leave the SO_{16} content of the (4) irrep of E_{8}. A similar examination of the antisymmetric part of the Kronecker square of the (2) irrep of E_{8} yields the SO_{16} string associated with the $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ decomposition of the $(\Delta ; 3)$ - irrep of E_{8}.

The corresponding branching rule for the (42) irrep of E_{8} follows from the use of the E_{8} Kronecker product
$(2) \times\left(2^{2}\right)=(42)+(321)+\left(31^{3}\right)+(31)+\left(2^{2}\right)+\left(21^{2}\right)+(2)+(\Delta ; 31)_{+}+(\Delta ; 2)_{+}$.
Likewise the $\left(41^{4}\right)$ irrep of E_{8} arises in the antisymmetric part, $\left(1^{2}\right) \otimes\left\{1^{4}\right\}$, of the fourth power of the $\left(1^{2}\right)$ irrep of E_{8}. The evaluation of the relevant SO_{16} plethysms follows from King et al (1981). The branching rule for the (421^{2}) irrep of E_{8} may then be found by noting that
$\left(31^{3}\right) \times\left(1^{2}\right)-\left(21^{2}\right) \times(2)=\left(421^{2}\right)+\left(41^{4}\right)+(31)+\left(2^{2}\right)+\left(21^{2}\right)+(2)+\left(1^{2}\right)$.
Continuing in this manner, it is not difficult to deduce many further $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules. By way of examples we give in table 1 the branching rules for four non-trivial

Table 1. $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules.

$D_{(\lambda)}$	E_{8}	SO_{16}
4881384	(4)	$\begin{aligned} & {[4]+[31111111]-+[3111]+[2222]+[221111]+[22]} \\ & +[21111]+[11111111]++[1111]+[0]+[s ; 3]-+[s ; 2111]- \\ & +[s ; 21]-+[s ; 1111]++[s ; 11]++[s ; 0]+ \end{aligned}$
6696000	(4 ; 3)	$\begin{aligned} & {[s ; 3]-+[s ; 2111]-+[s ; 211]++[s ; 21]-+[s ; 2]+} \\ & +[s ; 11111]-+[s ; 111]-+[s ; 11]++[s ; 1]-+[311111] \\ & +[3111]+[31]+[22211]+[22111111]-+[2211] \\ & +[2111111]+[21111]+[211]+[111111]+[11] \end{aligned}$
26411008	$(\Delta ; 31)_{+}$	$\begin{aligned} & {[s ; 31]++[s ; 221]-+[s ;+21111]++[s ; 2111]-+2[s ; 211]+} \\ & +2[s ; 21]-+2[s ; 2]++[s ; 111111]-+[s ; 1111]- \\ & +[s ; 1111]++2[s ; 111]-+[s ; 11]++2[s ; 1]-+[32111]+[321] \\ & +[31111111]++[311111]+[3111]+[31]+[2221111] \\ & +[22211]+[222]+[22111111]-+[221111]+[2211]+2[2111111] \\ & +2[21111]+2[211]+[2]+[11111111]-+[111111]+[1111] \end{aligned}$
76271625	(41 ${ }^{2}$)	$\begin{aligned} & {[411]+[3221]+[3211111]+[32111]+[321]+[31111111]-} \\ & +2[311111]+[3111]+[31]+[222211]+[2221111] \\ & +[22211]+[2211111]-+[2211111]++2[221111] \\ & +3[2211]+[22]+2[2111111]+2[21111]+2[211] \\ & +[11111111]++2[111111]+[1111]+[11]+[s ; 311]- \\ & +[s ; 31]++[s ; 3]-+[s ; 2211]++[s ; 221]-+[s ; 22]+ \\ & +[s ;+1111]-+[s ; 2111]++2[s ; 211]-+2[s ; 211]+ \\ & +3[s ; 21]-+[s ; 2]++[s ; 11111]++[s ; 1111]- \\ & +2[s ; 1111]++2[s ; 111]-+3[s ; 11]++[s ; 1]-+[s ; 0]+ \end{aligned}$

irreps of $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$. It is important to note that the methods used here yield the required results unambiguously. The first branching rules are established using the known $\mathrm{E}_{8} \downarrow \mathrm{SU}_{2} \times \mathrm{E}_{7}$ and $\mathrm{E}_{7} \downarrow \mathrm{SU}_{8}$ branching rules. Once these are unambiguously established we can then use E_{8} Kronecker products to produce new $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules without resorting to dimensional or Dynkin index methods that are ambiguous.

The branching rules evaluated here were rapidly calculated using the program SCHUR (Black 1983) to compute the E_{8} and SO_{16} Kronecker products, and the $\mathrm{SO}_{16} \downarrow \mathrm{U}_{1} \times \mathrm{SU}_{8}$ branching rules. The $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules were built up in SCHUR which checked the final results by computing the dimensions and Dynkin index for the E_{8} and SO_{16} irreps.

5. Conclusion

Methods for evaluating $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules in an unambiguous manner have been outlined and applied to some non-trivial examples. An alternative method of labelling the irreps of $\mathrm{SO}_{2 k}$ has been developed and exploited. It remains to be seen whether such a labelling scheme will lead to significant simplifications in computing properties of the $\mathrm{SO}_{2 k}$ groups.

Acknowledgments

This work was stimulated in part by a preprint from G Bélanger of Johns Hopkins University and was greatly assisted by G R E Black's SCHUR program. I am grateful to Dr R C King for a number of useful comments.

References

Black G R E 1983 A guide to SCHUR (University of Canterbury, unpublished)
Black G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 161555
Black G R E and Wybourne B G 1983 J. Phys. A: Math. Gen. 162405
King R C and Al-Qubanchi A H A 1981a J. Phys. A: Math. Gen. 1415

- 1981b J. Phys. A: Math. Gen. 1451

King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 142509
McKay W G and Patera J 1981 Tables of Dimensions, Indices and Branching Rules for Representations of
Simple Lie Algebras (New York: Dekker)
Slansky R 1981 Phys. Rep. 791
Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (New York: Wiley Interscience)
-_ 1979 Aust. J. Phys. 32417
Wybourne B G and Bowick M J 1977 Aust. J. Phys. 30259

